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Abstract

Most modern manufacturing facilities have hammers and presses as their production machinery.
Foundations supporting hammers and presses experience powerful dynamic effects. These effects may
extend to the surrounding and affect laborers, other sensitive machines within the same facility or
neighbouring residential areas. The vibration amplitudes and the forces transmitted to the supporting
medium can become the governing factor of the foundation of these machines. This paper analyzes the
response of one-mass hammer foundations and provides closed-form solutions for their dynamic response
to common practical forms of hammer loads: rectangular pulse, half-sine pulse, and triangular pulse. The
derived solutions are used to study the effect of the pulse shape and pulse duration on the dynamic response
of the one-mass hammer foundation system.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Foundations supporting hammers, presses and mills experience powerful dynamic effects.
These effects are inherent to the forging act of a hammer or the grinding act of a mill and often
result in excessive vibrations that may affect the functionality of the machine and cause
disturbances in the vicinity of the facility. Therefore, the main objective of the design of a
foundation for a shock-producing machine is to reduce the resulting vibrations in the foundation
and the supporting medium.
Hammer and mill foundations can be divided into two basic categories: foundations with

inertial block (Figs. 1(a) and (b)) and directly sprung machines (Fig. 1(c)). Because of the
structural form and rigidity of a hammer foundation, its response analysis is usually performed
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using lumped masses models. Most hammer foundation configurations possess one or two vertical
degrees of freedom (assuming centric loading) and are usually modelled as one or two lumped
masses with springs and dashpots. A hammer rigidly connected to an inertial block founded on
soil or piles (e.g., Fig. 1(a)) may be considered to be a one-mass foundation (i.e., one degree of
freedom). A directly sprung hammer founded on rock may also be considered to be a one-mass
foundation (e.g., Fig. 1(c) when the supporting medium is rock). Likewise, a clinker mill rigidly
connected to its foundation can be considered as a dynamic system in which the mill and
foundation behave as a single-mass oscillator with the spring either formed by the ground (or
piles) and/or additional spring–damper elements. On the other hand, inertial blocks founded on
soil or piles with an elastic pad beneath the anvil, or directly sprung hammers founded on soil or
piles may be considered to be two-mass foundations.
The response of hammer foundations under different types of loading has been investigated.

Novak [1] and Novak and El Hifnawy [2] investigated the response of one- and two-mass hammer
foundation systems. Two methods were used to account for damping in the analysis: a solution
based on energy consideration and another based on the complex eigenvalue approach. The effect
of the anvil pad flexibility on the foundation response was shown. Novak [1] investigated different
configurations of hammer foundations sitting on homogeneous soil or supported by piles. He used
the direct method to evaluate the response and the force transmitted into the ground for a one-
mass foundation and the modal analysis approach for the two-mass foundations. El Hifnawy and
Novak [3] studied the undamped and damped responses of two-mass foundation systems to pulse
loading using the complex eigenvalue approach. Chehab and El Naggar [4] investigated the effect
of installing a mounting system on the dynamic behaviour of hammer and press foundations and
developed design guidelines for efficient mounting systems for hammer foundations using two-
mass foundation models.
In this study, closed-form solutions are developed for a one-mass foundation system subjected

to the common practical forms of hammer loads: very short-period pulse (i.e., initial velocity
approach), rectangular pulse, half-sine pulse, and triangular pulse. These solutions can be used to
calculate the exact response time history once the dynamic characteristics of the system are
known.
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mass foundation with springs and dampers.
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2. Foundation impedance

The foundation impedance can be obtained from the analytical and numerical approaches of
the solution of a mixed boundary-value problem in elastodynamics and are generally functions of
soil properties, foundation type and size, and exciting frequency.
A number of analytical and numerical approaches, mostly based on the assumption of elastic or

viscoelastic soil continuum, are available to calculate the impedance functions for both shallow
and deep foundation systems. The impedance function of a foundation system is a complex
quantity that has a real part that represents the stiffness and an imaginary (out-of-phase)
component that represents the damping. The impedance function of the foundation in the vertical
direction can be written as

K ¼ k þ ioc; ð1Þ

where k is the stiffness constant, c is the constant of equivalent viscous damping and o is the
vibration frequency in rad/s.

2.1. Foundation on soil

For embedded foundations in a deep homogeneous stratum (half-space), the stiffness and
damping constants can be calculated using the formulae from Refs. [5,6], i.e.,

k ¼ Gr0 Cv1 þ
Gs

G

l

r0
Sv1

� �
; ð2aÞ

c ¼ r20
ffiffiffiffiffiffiffi
rG

p
%Cv2 þ %Sv2

l

r0

ffiffiffiffiffiffiffiffiffiffiffi
rs

r
Gs

G

s !
; ð2bÞ

where G is the soil shear modulus, r0 is the base radius for circular bases or the equivalent radiusffiffiffiffiffiffiffiffiffi
A=p

p� 	
for non-circular bases, r is the soil density, l is the embedment depth, and Gs and rs are

the shear modulus and density of the side layers (backfill). The dimensionless stiffness and
damping parameters Cv1 and %Cv2 depend on the dimensionless frequency a0 ¼ o0r0=Vs where o0 is
the system natural frequency and Vs is the soil shear wave velocity. Sv1 and %Sv2 are the
dimensionless stiffness and damping parameters for the side layer. Novak [1] provided values of
Cv1; %Cv2; Sv1 and %Sv2 that are suitable for most hammer and press applications.

2.2. Foundation on piles

The stiffness and damping of pile foundations are evaluated from the stiffness and damping of
single piles modified to account for the group effect. The vertical stiffness and damping
coefficients for a single pile can be calculated as [7]

k ¼
EpAp

R
fv1; c ¼

EpAp

Vs

fv2; ð3a;bÞ

where Ep; Ap; and R are Young’s modulus, cross-sectional area and radius of the pile,
respectively. The dimensionless parameters fv1 and fv2 represent the soil properties and are given in
charts in Ref. [7]. The stiffness and damping of a group of piles can be computed using the
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approach described in Ref. [8]. In this approach, the stiffness and damping of single piles are
calculated first, then the group effect is accounted for using the dynamic interaction factors
introduced by Ref. [9].

2.3. Hammers on mounting systems (directly sprung)

The stiffness and damping constants of mounting systems that have springs and viscous
dampers (e.g., Fig. 1(c)) depend on the material from which they are made and their configuration
and are usually supplied by the manufacturer.

3. Mathematical model

The hammer foundation system shown in Fig. 1(a) and a directly sprung hammer founded on
rock (similar to Fig. 1(c)) may be considered to be a one-mass foundation. The mathematical
model of a one-mass foundation is shown in Fig. 2. The response of the foundation varies with
time, i.e., v ¼ vðtÞ: However, the response will be referred to as v for brevity. The governing
equilibrium equation of the one mass system shown in Fig. 2 is given by

m.v þ c’v þ kv ¼ f ðtÞ; ð4Þ

where m is the mass of the foundation system, k and c are its stiffness and damping constants, v; ’v
and .v are the displacement, velocity and acceleration of the foundation block, respectively, and
f ðtÞ is the forcing function.
Applying the Laplace transform [10] to both sides of the equations yields

mðVS2 � v0S � ’v0Þ þ cðSV � v0Þ þ kV ¼ F ðSÞ; ð5Þ

where S is a complex variable (called complex frequency) associated with Laplace transform, V

and FðSÞ are variables equivalent to v and f ðtÞ and are functions of S; v0 and ’v0 are
the initial displacement and initial velocity of the foundation block, respectively. Rearranging
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Fig. 2. One-mass foundation model.
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Eq. (5) yields

V ðSÞ ¼
ðmv0S þ m’v0 þ cv0Þ
ðmS2 þ cS þ kÞ

þ
F ðSÞ

ðmS2 þ cS þ kÞ
: ð6Þ

The first term on the right hand side of Eq. (6) represents the transient response due to the
initial conditions (termed as the zero input response) while the second term represents the
response due to the applied load. The term 1=ðmS2 þ cS þ kÞ is the system transfer function and
represents the admittance of the system (reciprocal of the impedance). The response time history is
obtained by applying an inverse Laplace transform to Eq. (6).

3.1. Zero input response (homogeneous response)

The zero input response is the response of the system when no external force is applied. It exists
only when there are initial conditions, displacement and/or velocity. This response is transient for
most systems (i.e., damped systems) and is dependent on the system properties (mass, stiffness and
damping).
For zero external load, Eq. (4) becomes

m.v þ c’v þ kv ¼ 0 ð7Þ

and consequently, Eq. (6) is reduced to

VðSÞ ¼
ðmv0S þ m’v0 þ cv0Þ
ðmS2 þ cS þ kÞ

: ð8Þ

Manipulating Eq. (8) by dividing the nominator and denominator by m and completing the
denominator to a complete square leads to

VðSÞ ¼
v0S þ ’v0 þ ðc=mÞv0

ðS þ c=ð2mÞÞ2 þ ðk=m � c2=ð4m2ÞÞ
: ð9Þ

Introducing the natural frequency, o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; the damping ratio, D ¼ c=2

ffiffiffiffiffiffiffi
km

p
and the

damped natural frequency, o0
0 ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
; and then substituting into Eq. (8) and rearranging

yields

VðSÞ ¼
v0S þ ’v0 þ 2Do0v0
ðS þ Do0Þ

2 þ ðo0
0Þ
2
: ð10Þ

Applying an inverse Laplace transform to Eq. (10) gives

vðtÞ ¼ v0e
�Do0t cosðo0

0tÞ þ
’v0

o0
0

þ
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p v0

 !
e�Do0t sinðo0

0tÞ: ð11Þ

The velocity is obtained by differentiating the displacement, i.e.,

’vðtÞ ¼ ’v0e
�Do0t cosðo0

0tÞ �
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p v0 þ
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p ’v0

 !
e�Do0t sinðo0

0tÞ: ð12Þ
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3.2. Initial velocity approach

If the duration of the impact load, tp; is very short relative to the natural period of the machine-
foundation system, T ¼ 2p=o0 (i.e., tp5T), it can be assumed that the load will expire before the
system starts to respond. In this case, f ðtÞ is assumed to be zero and the foundation goes through a
free vibration triggered by an initial velocity, ’v0: The response is obtained by using Eq. (11) and
setting the initial displacement of the foundation block, v0; to zero, i.e.,

vðtÞ ¼
’v0

o0
0

e�Do0t sinðo0
0tÞ: ð13Þ

The velocity becomes

’vðtÞ ¼ ’v0e
�Do0t cosðo0

0tÞ �
’v0Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p e�Do0t sinðo0
0tÞ: ð14Þ

The initial velocity, ’v0; can be obtained from consideration of the collision between the hammer
head and the foundation. The pulse resulting from this collision is presumed to be infinitesimally
short and, as a result, the restoring and damping forces have not been activated during the
collision. Consequently, the collision is governed by the relations valid for two free bodies and
the initial velocity can be evaluated from considerations of conservation of momentum. The
maximum response occurs at a time tm given by

tm ¼
1

o0
0

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
D

: ð15Þ

The maximum response of the foundation system is obtained by substituting tm in Eq. (13). The
force transmitted to the foundation base (soil or piles) can be evaluated from

fsðtÞ ¼ kv þ c’v: ð16Þ

3.3. Response to applied loads

If the duration of the impact load is greater than one-tenth the natural period of the machine-
foundation system (i.e., tp5TÞ; the response of the system is affected by the characteristics of the
impact load. The impact load is characterized by its amplitude, form of variation with time and
duration, or its impact energy. The impact energy is evaluated as the integration of the time
history of the forcing function. The following sections examine the system response to various
impact loads.

3.3.1. Rectangular pulse
The rectangular pulse load is characterized by constant amplitude, Pr; during the load period,

tp; and is equal to zero outside this period as shown in Fig. 3(a). The time history of a rectangular
pulse load is expressed as

f ðtÞ ¼
Pr; 0ototp;

0; t > tp:

(
ð17Þ
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The Laplace transform of the pulse is

F ðSÞ ¼
Pr

S
; 0ototp;

0; t > tp:

8<
: ð18Þ

Substituting Eq. (18) into Eq. (6) and setting the initial conditions to zero, it can be shown that

V ðSÞ ¼
Pr

k

1

S
�

S þ c=m

ðS þ Do0Þ
2 þ ðo0

0Þ
2

" #
: ð19Þ

Applying an inverse Laplace transform to Eq. (19) yields

vðtÞ ¼
Pr

k
1� e�Do0t cosðo0

0tÞ �
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p e�Do0t sinðo0
0tÞ

" #
; 0ototp; ð20Þ

and the velocity is given by

’vðtÞ ¼
Pr

k

o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p e�Do0t sinðo0
0tÞ

" #
; 0ototp: ð21Þ

When the pulse expires, the system goes through free vibration, which is only influenced by its
damped natural frequency and displacement and velocity at the end of the pulse. The solution for
this free vibration is similar to the solution of the zero input response case (Section 3.1) with the
initial conditions (displacement and velocity) being calculated from Eqs. (20) and (21) by setting t

to tp: Hence, the time history of the response after the load duration is expressed as

vðtÞ ¼ vtp
e�Do0ðt�tpÞ cosðo0

0ðt � tpÞÞ

þ
Do0vtp

þ ’vtp

o0
0

� �
e�Do0ðt�tpÞ sinðo0

0ðt � tpÞÞ; t > tp; ð22Þ

’vðtÞ ¼ ’vtp
e�Do0ðt�tpÞ cosðo0

0ðt � tpÞÞ

�
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p vtp
þ

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p ’vtp

 !
e�Do0ðt�tpÞ sinðo0

0ðt � tpÞÞ; t > tp; ð23Þ

where vtp
and ’vtp

are the displacement and velocity of the foundation block at the end of the pulse
ðt ¼ tpÞ: Usually, the duration of the impact load is much shorter than the system natural period
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Fig. 3. Different shapes of pulse loads: (a) rectangular, (b) half-sine, (c) triangular.
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and the maximum response occurs after the end of the pulse. The force transmitted to the
supporting medium can be evaluated using Eq. (16).

3.3.2. Half-sine pulse
The half-sine pulse can be described by its amplitude Ps and its duration tp as shown in

Fig. 3(b). The pulse time history is expressed as

f ðtÞ ¼
Ps sin

p
tp

t

� �
¼ Ps sinðotÞ; 0ototp;

0; t > tp;

8><
>: ð24Þ

where o ¼ p=tp: The Laplace transform of the pulse is

F ðSÞ ¼

Psp=tp

S2 þ ðp=tpÞ
2
¼

Pso
S2 þ o2

; 0ototp;

0; t > tp:

8><
>: ð25Þ

Substituting Eq. (25) in Eq. (6) and setting the initial conditions to zero gives the response during
the pulse period in the complex frequency domain, i.e.,

VðSÞ ¼
Pso

S2 þ o2
1

mS2 þ cS þ k
¼

Pso=m

ðS2 þ o2ÞðS2 þ 2Do0S þ o0
0Þ
: ð26Þ

The foundation response during the pulse period is obtained by applying an inverse Laplace
transform to Eq. (26), i.e.,

vðtÞ ¼
Pso=m

ðo2 � o20Þ
2 þ 4D2o20o

2
�2Do0 cosðotÞ þ

o20 � o2

o
sinðotÞ

�

þ 2Do0e�Do0t cosðo0
0tÞ þ

o2 � o20 þ 4D
2o20

o0
0

� �
e�Do0t sinðo0

0tÞ
�
: ð27Þ

The velocity is obtained by differentiating the displacement, i.e.,

’vðtÞ ¼
Pso=m

ðo2 � o20Þ
2 þ 4D2o20o

2
2Doo0 sinðotÞ þ ðo2 � o20Þe

�Do0t cosðo0
0tÞ

"

þ ðo20 � o2Þ cosðotÞ � 2Do0o0
0 þ

ðo2 � o20 þ 2D
2o20ÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� D2
p

 !
e�Do0t sinðo0

0tÞ

#
: ð28Þ

The displacement and velocity of the system at the end of the pulse, vðtpÞ and ’vðtpÞ; are calculated
by replacing t with tp in Eqs. (27) and (28), and are used as initial conditions in Eqs. (22) and (23)
to find the response of the system after the end of the pulse.
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3.3.3. Triangular pulse

The symmetric triangular pulse is shown in Fig. 3(c) and its time history is expressed as

f ðtÞ ¼

2Pt

tp

t; 0oto1
2

tp;

2Pt 1�
t

tp

� �
; 1

2
tpototp;

0; t > tp:

8>>>>><
>>>>>:

ð29Þ

The response can be found over three stages as follows.
First stage ð0oto1

2
tpÞ: The Laplace transform of the forcing function during the first stage is

given by

F ðSÞ ¼
2Pt

tp

1

S2
: ð30Þ

Substituting Eq. (30) into Eq. (6) and setting the initial conditions to zero gives

V ðSÞ ¼
2Pt

tp

1

S2
1

mS2 þ cS þ k
¼
2Pt

mtp

1

S2ðS2 þ 2Do0S þ o20Þ
: ð31Þ

Applying an inverse Laplace transform to Eq. (31) yields

vðtÞ ¼
Pt

ktp

�4D
o0

þ 2t þ
4D

o0
e�Do0t cosðo0

0tÞ þ
4D2 � 2

o0
0

e�Do0t sinðo0
0tÞ

� �
: ð32Þ

The velocity during this stage is obtained by differentiating Eq. (32), i.e.,

’vðtÞ ¼
2Pt

ktp

1� e�Do0t cosðo0
0tÞ �

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p e�Do0t sinðo0
0tÞ

" #
; 0oto1

2
tp: ð33Þ

The displacement and velocity at the end of first stage, vð1=2Þtp
and ’vð1=2Þtp

; are calculated by
substituting 1

2
tp in Eqs. (32) and (33) and are used as initial conditions for the second stage of the

pulse.
Second stage ð1

2
tpototpÞ: The total response during the second stage is obtained by summing

the response due to the impact load during this stage (load-induced response) and the response
due to the initial conditions at the beginning of the stage (free vibration response), i.e.,

vðtÞ ¼ v1ðtÞ þ v2ðtÞ; 1
2

tpototp; ð34Þ

where v1ðtÞ is the load-induced response and v2ðtÞ is the free vibration response.
The impact load during the second stage can be considered as the sum of a constant load with

amplitude 2Pt and a negative ramp load given by �2Pt=tpt: The load-induced response can then
be obtained by superimposing the responses due to both loads.
The load-induced response is obtained by subjecting the two load components to the Laplace

transform, substituting in Eq. (6) and setting the initial conditions to zero. The response time
history, v1ðtÞ; is then obtained by applying an inverse Laplace transform to the resulting equation

ARTICLE IN PRESS

A.G. Chehab, M.H. El Naggar / Journal of Sound and Vibration 276 (2004) 293–310 301



and is given by

v1ðtÞ ¼
Pt

k
1þ

4D

o0tp

�
2

tp

t � 1
2

tp

� 	
� 1þ

4D

o0tp

� �
e�Do0ðt�ð1=2ÞtpÞ cos o0

0 t � 1
2

tp

� 	� 	"

�
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p þ
4D2 � 2
o0
0tp

 !
e�Do0ðt�ð1=2ÞtpÞ sin o0

0 t � 1
2

tp

� 	� 	#
: ð35Þ

The free vibration response during the second stage is calculated using the initial conditions
vð1=2Þtp

and ’vð1=2Þtp
obtained at the end of the first stage. The free vibration response during the

second stage, v2ðtÞ; is given by

v2ðtÞ ¼ vð1=2Þtp
e�Do0ðt�ð1=2ÞtpÞ cos o0

0 t � 1
2

tp

� 	� 	
þ

Do0vð1=2Þtp
þ ’vð1=2Þtp

o0
0

� �
e�Do0ðt�ð1=2ÞtpÞ sin o0

0 t � 1
2

tp

� 	� 	
: ð36Þ

The velocity during the second stage is obtained by differentiating the displacement with respect
to time, i.e.,

’vðtÞ ¼ ’v1ðtÞ þ ’v2ðtÞ; 1
2

tpototp; ð37Þ

where

’v1ðtÞ ¼
Pt

k
�
2

tp

þ
2

tp

e�Do0ðt�ð1=2ÞtpÞ cos o0
0 t � 1

2
tp

� 	� 	"

þ
2D=tp þ o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
 !

e�Do0ðt�ð1=2ÞtpÞ sin o0
0 t � 1

2
tp

� 	� 	#
; ð38Þ

’v2ðtÞ ¼ ’vð1=2Þtp
e�Do0ðt�ð1=2ÞtpÞ cos o0

0 t � 1
2

tp

� 	� 	
�

o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p vð1=2Þtp
þ

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p ’vð1=2Þtp

 !
e�Do0ðt�ð1=2ÞtpÞ sin o0

0 t � 1
2

tp

� 	� 	
: ð39Þ

The response at the end of the second stage vtp
and ’vtp

is used as the initial conditions for the third
stage.

Third stage ðt > tpÞ: The system vibrates freely after the end of the pulse ðf ðtÞ ¼ 0Þ: Eqs. (22) and
(23) can be used to calculate the response of the foundation system using vtp

and ’vtp
evaluated at

the end of the second stage.

4. Numerical example

A shallow foundation is designed to support a forging hammer. The foundation is square in
plan 5 m� 5 m and is 2 m thick. The foundation is fully embedded in the soil (i.e., l ¼ 2 m). The
soil profile at the foundation site consists of fairly homogeneous cohesive soil with an average
shear wave velocity 150 m=s and mass density 1900 kg=m3: The total mass of the foundation and
supported equipment is 200; 000 kg: The backfill material (the side soil layer) is granular A with
an average shear wave velocity of 120 m=s and a mass density of 1800 kg=m3: The stiffness and
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damping constants of the foundation calculated using Eq. (2) are k ¼ 8:1� 108 N=m; c ¼
1:0� 107 N=m=s:
The dynamic characteristics of the foundation system are calculated for the given values of k; c

and m as

o0 ¼ 63:6 rad=s; D ¼ 39:3%; o0
0 ¼ 58:5 rad=s:

The impact force due to the forging act of the hammer is modelled as a rectangular, half-sine or
triangular pulse with a period of 10 ms and constant power content (area under the load-time
curve). The amplitude of the rectangular pulse considered in this example is Pr ¼ 1 MN: The
amplitude of a half-sine pulse that has the same power (area under load-time curve) and duration
as the rectangular pulse is obtained by equating the power of the two pulses, i.e.,Z tp

0

Ps sin
p
tp

t

� �
dt ¼ Prtp: ð40Þ

Solving for the amplitude of the half-sine pulse, Ps; gives

Ps ¼
Prp
2

: ð41Þ

Similarly, the amplitude of a triangular pulse, Pt; is obtained using the same method to
maintain the same duration and power of the impact and is given by

Pt ¼ 2Pr: ð42Þ

The response of the foundation system to the rectangular pulse load is evaluated first using the
equations developed and the displacement response is compared in Fig. 4 with the numerical
solution of the response obtained by solving the governing equilibrium equation (Eq. (4)) using
the Runge–Kutta formula, Dormand–Prince pair with variable step size [12]. Fig. 4 shows that the
responses obtained from both methods are almost identical, confirming the validity of the
developed equations.
The response of the foundation system to the three forms of the impact load is evaluated using

the equations developed and the results are presented in Figs. 5–7. Fig. 5 shows the displacement
of the foundation system to the three load types. It is noted from the figure that for the case
considered (short load duration) the system response is almost the same for all load types
considered. Similar observations can be made from Figs. 6 and 7 for the velocity of the foundation
and the force transmitted to the soil, respectively.

5. Effect of pulse duration

Since the exciting forces due to a mill or a hammer operation are stochastic in nature, design
codes (e.g., Ref. [11]) require that the maximum size of representative excitation processes (e.g.,
individual impacts) be estimated where no excitation time history or power spectrum functions
exist. This maximum size impact is always specified as the design load for the foundation system,
and usually the duration is not provided. The maximum size impact is usually associated with
extreme events that maximize the load amplitude but the duration of the impact is usually short.
However, the same machine at different operating conditions may produce different size impacts
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that can be characterized by smaller amplitudes but longer durations when compared with
maximum size impacts.
For example, the maximum size impact in forging hammers occurs when the sample is absent

thus yielding the hardest shock but for a short duration. However, the lowest impact size occurs
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when forging nonferrous materials but the duration will be much longer. Similarly, in clinker mills
the size of impact (due to the grinding process) and its duration depend on the size of the feed
aggregate. Large aggregates with a small percentage of fines will lead to the largest size impact but
for a short duration. On the other hand, if the aggregate size is small and the percentage of fines is
high, the amplitude of the impact decreases and the duration increases.
In both cases, the power of the impact should only depend on the capacity of the exciter of the

machine, which is presumed to be constant or limited to a maximum value depending on its
mechanical design. Therefore, it is of interest to examine the effect of the impact duration on the
system response. Thus, the three forms of the impact load considered in this study (i.e.,
rectangular, half-sine and triangular) with the same power content but with a duration of 50 ms
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(rather than 10 ms) were applied to the foundation system. The results are compared with those
obtained for the short duration case (i.e., 10 ms) in Figs. 8, 9 and 10 for the displacement and
velocity of the foundation, and the force transmitted to the soil, respectively. The figures show
that the responses decreased for the long period case for all load forms but by varying amounts.
For the long period case, the responses due to the rectangular pulse are smaller than those for the
half-sine pulse, which in turn are smaller than those for the triangular pulse.
To further examine the effect of pulse duration (and its form) on system behaviour, the pulse

duration was varied from very short (almost zero) duration to a duration that is five times the
system natural period while keeping the impact power content constant. The response was
calculated in each case and the maximum responses (displacement and velocity of the foundation,
and the force transmitted to the soil) were recorded. The maximum response was then normalized
by the maximum response due to a very short pulse ðtpE0Þ and the pulse duration was norma-
lized by the foundation natural period ðT ¼ 1=f Þ: The results are presented in Figs. 11, 12 and
13 for the displacement and velocity of the foundation, and the force transmitted to the soil
or piles.
Fig. 11 shows that the response of the system decreases as the pulse duration increases (for

constant power content). For example, the foundation response for a pulse with tp ¼ 1
2

T is
55–75% of the foundation response due to a pulse tp5T ; and its response due to a pulse with
tp ¼ T is 30–50% the response due to the short duration pulse. It can also be noted from Fig. 11
that the assumed form of the impact load has a significant effect on the calculated response for a
long duration pulse. For example, for a pulse with tp ¼ T the response of the foundation to a
triangular pulse is 50% higher than its response to a rectangular pulse. Similar observations can
be made regarding the foundation velocity and the force transmitted to the soil from Figs. 12
and 13.
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The system response is sensitive to the pulse duration for tpo2T : For tp > 2T ; the
response becomes insensitive to the pulse durations. For long pulses, the problem converges
to the static case (note that the velocity amplitude converges to zero as the pulse duration
increases).
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6. Conclusions

Closed form solutions for the evaluation of a one-mass foundation response to rectangular,
half-sine and triangular pulses have been developed and expressed in terms of the system dynamic
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characteristics and the pulse properties. The results from the developed solutions compared well
with the numerical solution. The developed equations were used to evaluate the response of a one-
mass foundation to pulse loading with different shapes and/or pulse duration but constant power
content. The following conclusions were made:

1. For short pulse duration ðtpoT=10Þ; the foundation response is insensitive to the pulse form.
The response is almost the same for all pulse forms.

2. As the pulse duration increases, the system response decreases. Therefore, prolonging the pulse
duration (relative to the period of the system) helps reduce the dynamic response of hammer
and mill foundations (for constant power content). Thus, a properly designed mounting system
may be used to alter the system period and the rate of load, and consequently reduces the
system response.

3. For long pulse duration, the triangular pulse results in a higher response compared to half-sine
and rectangular pulses. Therefore, it is safer to consider a triangular pulse in the response
analyses of hammer and mill foundations.

4. For very long pulse duration ðtp > 2TÞ; the response becomes insensitive to the pulse duration.
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